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ON INVESTIGATING RESONANT ALMOST-PERIODIC SYSTEMS 
FOR ST~ILITY WITH RESPECT TO A PART OF THE VARI~LES* 

MM. KHAPAHV and V.N. SHINKIN 

A previously-uninvestigated case of fourth-order resonance of quasilinear systems 
with coefficients almost-peridic in time is examined. In this case the application 
of analytical methods of reduction to normal form faces a number of difficulties. 
This problem is solved below by means of a constructive construction of the perturb- 
ed Liapunov (Chetaev) function and of studying the extremal properties of the mean 
of its derivative /If, containing only resonance terms. 

Quasilinear systems have been studied in many papers devoted to the development of a 

number of qualitative ideas of the method of reduction to normal form in the sense of Briuno 
/2,3/, as well as in papers connected with the generalized second method of Liapunov /4,5/. 
Quasilinear systems with almost-periodic coefficients, formally reducible to autonomous ones, 

were studied in /6/ under resonance of odd order. 
Consider the system 

We denote 

A) Let the right-hand sides of system (1) be analytic in z and be almost-periodic func- 
tions of time. 

B) Let the functions fr(trz) and f*(%,r) be polynomials of second and third degree in tJ 
respectively, and let functions Fe(t,z) be of higher than third order in a. 

We consider as well the system 

If' a %&, @'I p= -$xj, j = f, 2,..., R (2) 

C) Let the eigenvalues i$(i*= -1) of the linear part of system (2) be pure imaginary and 
not connected by resonance relations up to third order, inclusive. 

Condition C signifies that any linear combination of the numbers &A) with integer coef- 
ficients does not belong to the frequency spectrum of the coefficients of the original system 
(1) if the sum of the absolute values of all integers occurring as multipliers of A&), does 
not exceed three. 

System (2) has the Liapunov function 
k 

v, 66 $1 = 
c 

lhjt 

tzj’ + stj9 

2 t kfn 

?=I 

We construct the perturbed Liapunov function /l/ as a segment of a power series in Z: VI v,,+ 
S, where the perturbation S is a homogeneous polynomial in z. in such a way that the total 

derivative of Y relative to system (1) starts with terms of even order in Z. We denote 

We expand function X into a series in the complex variables U, =tj+ iy*,_vj= +r_~sfi 
. . ..k.(t) we denote the Coefficient in this series of the term .yvy... um”;pk, 

By a,,+, 

integers). We set n n (mi,ki are positive 
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B, ,.._ k 
n 

(4 = e=P I- I (h h - k,) + + An (M, - k,)) I; x 

[Cm ,... I,-(b,.. . In (I) exp (i (A1 (m, - k,) + A- i.,, (nz,, - k,)) I) df 
0 3 

%...k, = const 

We now construct the perturbation s as the series 

We represent the general solution of system (2) in the form 21 
EIence reapactively, UJ = ‘I exP (i (A$ + %)I. 

= '1 COS @Jt + 6J), VJ - ‘J sin (AJt + 0,). 

“J = ‘J exp (- i (5: + 8,)). We compute the mean of Y al- 
ong the solution of system (2) 

By virtue of its constructionI is an almost-periodic function of time and, therefore, its 
mean B always exists. It is convenient to compute the mean in the complex variables in which 
function Y takes the form 

Yqm E c, A = (A,, - A,, . . * An. - in), 

8 = (h, - e,, , en, - en) 

Q,ER, FEZ. Q=(q ,,..., Q~,,)EZ*“~ 
rQ = ,yJ~ *pn-l+% 

. . . rn 

We shall say that internal resonance of order 1 Qj is observed in system (1) if (Q.1) +P, =I). 
The internal resonance is said to be an identity resonance if (QA)-_o. Computing the mean v. 
we get that it contains only the resonance terms of function Y 

v(rsO) =~~'4,rQerp(1(@)}; (QA)+~,-0 
Qm 

D) Let the mean v(r,e) be a negative-definite function in r1.a .. ,,Y(kd n). 
We formulate theorems on investigating for asymptotic stability and instability under a 

fourth-order identity resonance, based on the study of the extremal properties of the mean of 
the derivative of the perturbed Liapunov function. 

Theorem 1. Let conditions A-D be fulfilled. Then the equilibrium position of system 
(1)is asymptotically stable with respect to a part zl.Y1...., rk.Yk of the variables. 

Theorem 2. Let conditions A-C be fulfilled. Let the mean q(r,e) be a positive-de- 
finite function in 11' . . . . ~(k<n). Then the equilibrium position of system (1) is unstable 
with respect to the part 11~ YU - - -p *kp Yk of the variables. 

The proofs of Theorems 1 and 2 are analogous to the corresponding ones in /7/. 
Let us now formulate a Chetaev-type theorem which is applicable to the study of instab- 

ility under fourth-order internal resonance. The presence of nonidentity fourth-order re- 
sonances between the frequencies of linear system (2) can lead to sign-variability with re- 

spect tor of the quadratic form of mean '?((r,e). In this case, as V, we take a sign-variable 

integral of system (2), homogeneous in z.Y. For this we consider the homogeneous function 

sign-variable in r. As V,(F,@) we can take, for instance, the mean q(,, e). For r.6 we sub- 

stitute their expressions in terms of I. Y. The function V, (z. Y, ,) =VO (r, 0) obtained is pre- 

cisely the required sign-variable integral of system (2). We construct the perturbed func- 

tion V = V, f s (just as we did above) in such a way that a total derivative of v relative to 
aystem (1) starts with even-order terms in =.Y. 

Theorem 3. Let conditions A-C be fulfilled. Let V(z.1) be a positive-definite (neg- 

ative-definite) function in the variables I,. Y,, ..,rr.yr in the domain V>O(V<O). Let the 

mean T(r.0) of the derivative of the perturbed function V = V, + s (where V, is defined in 
(3)) be a positive-definite (negative-definite) function in r,. . ., r~ in the domain I' (t. Y. I) = 

V kr 8, t) > 0 (in the domain V (I. Y. !) = V (rl 8. f) < 0). Then the equilibrium positionof system 

(1) is unstable with respect to the part XI' YI, ., =li, Yk of the variables. 
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'The proof of Theorem 3 relies on the results in /7/; therefore, we merely indi:ate the 

idea on which it is founded. Without loss of generality we take it that the mean Y is a 
positive-definite function in ~19.. .rrk in the domain V>O. From /7/ it follows that 3e,>O 

and 3T,)o: for any solution s(t). z&,)=4, such thatzpE(V>O), I2,I+lnl+...+I2rI+llkl# 

0, I% I < QlJ it follows that V (2 (I), 0 > V (10. to)>0 for t>t, + T.. We take ve > 0 (8 d 8,) 

and V6<<. We select L>O, such that the set (V(r, t)>L) is located outside the (e+ A)- 
neighborhood of zero with respect to the variables %*YI. *-- -9% Ok (A>@. From /7/ it fol- 

lows that 3T1 > To: V (z (0, t) > L for t >to -i- TP Because function V is almost-periodic in t 

there exits T,ZT, such that the set (V(G to-t- T,)>,U is located outside the (E + A/Z)- 

neighborhood of zero with respect to the variables 21. WI?. . -rZk~ Ik. Hence we get that Ir(b+ 

T,) I > e + A/Z > 8. Therefore, the zero solution of system (1) is unstable with respect to 
21' III* . . ., “kr Vk. 

Note. When investigating third-order resonances in system (l), it is enough to set ScO 
in Theorem 3 and to let the function V -H(E,:). When investigating resonances of higher than 
fourth order it is necessary, analogously to what was done above, to construct a Liapunov func- 

tion in powers ofz with due regard to terms of fourth, fifth, etc. orders, respectively. 
Let us consider model examples of nonlinear systems with coefficients almost periodic in 

time and with a holomorphic right-hand side , in a neighborhood of the zero equilibrium posi- 
tion. Example 1 illustrates Theorem 1 on the asymptotic stability in the case of identity 
resonance 

21' = &UI - z,yl3sin t + 2l/,&!, (4sinfit + 1) - &-_'zl co* t - 
II* (2 + 3wsV2t) + zlzs~(sinflf + cosfit) + 0 ( 1 z 14) 

(4) 

YI' = --hazy - z,* (2sin I/zt + i) - h,-$,y,4 J&os~t + 

w,’ (3 + 7~0s t) + z,%5eosI'% + o ( 1 z (4) 
3’ = --hy, - R” (4sinfi + 1) - ~-'2V-zz,z, cosv% - ZIZ& (6 - 
COSVX) + 0 ( Iz 1’) 

Ilt’ = h% + k=, @infit + i) - yI*yp (5 - SW&%) - ~,a (4 + 
cosV% + 0 ( Ix I’) 

2 = h YIP +!a 69) 

We set I.~ = 2~6. b= 3~f6. Then the perturbed Liapunov function has a sufficiently simple form 

V = 0.5& @I' + 111') + 0.5h, (.zf+ Is') + zIs sin t+ 
zIzs* (2sin VZ + 1) + Y&I~ (4sin I/St + 1) 

The mean P of the derivative to the perturbed Liapunov function contains only the fourth-order 
identity resonance terms and is a sign-negative biquadratic function in r, (ri' = ci* + Vi', i= 
1, 2) q = fi (--1.5~' - 2.25r,*$ - 1.125~'). 

Consequently, by Theorem 1 the zero equilibrium position of (4) is asymptotically stable. 
Example 2 is on the investigation for instability in the case of an internal fourth-order 

resonance by use of the Chetaev-type Theorem 3 

-ij- @iat + GcosVXt) y?+ 2 (2hl + &)sin (2hI + hdt~,*+ 

211 Cos (2X1+ It) tz,y~ + rp (I- 5 sin nt) + 0 (I z 14) 

UI’ = - hlq - $ ii, (cos 1 - sin fit) z,z - 
9 
~(sint+~co~fiL)r~~~+ 

a&sin (%+ hl)trlul+ 2 (2&-t A*) cos (2hl+ ~,)QQ- 

YIZZYS (1 + cos V%) + z&sin t + 0 (I z *) 
%’ = --h&2 - (24 + 1~) Cm (%.I + &J ty,.r, - A, sin (2.X, + &) ly,y2- 

I& (3~0s fi5t - l)+ I& sin lrit -t 0 (I z I*) 
Yz' = J#, - a, co8 (2h, + &) tzIzg - (2% + M sin (2% + hl) tzl~t - 
zls sin fit- z,~(cos t- 3 sin V-St)+ o(l I 1') 

2 = (II' 1/l. 22, I/P) 

A fourth-order internal resonance is observed in system (5) when h,=3firhp= fi. Inthiscase 
the perturbed Liapunov function is 

1' = =I=* (Q - 3y,l) - y,y, (3z** - vr*)+ $(COS* - sin fit)- 
2 sin (2& + 5) ty,*yzS + 2~0s (24 + &) t+f 
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The mean P of the derivative of the perturbed Liapunov function is the sign-constant f;u:ctlo:; 
i? = O.l25r,’ positive definite in the domain (V>O). Consequently, by Theorem 3, the zero 
equilibrium position of system (5) is unstable. 

We remark that with the use of a perturbed function we can investigate the instability 
of the Lagrange libration points of the circular restricted three-body problem under reson- 
ances of third and fourth orders, previously investigated by reduction to normal form in the 
sense of Briuno /8/. In the case of third-order resonance 

Y = v, + s. v, = q (1,' - y,') - 2&T&J,, s z 0 

In the case of fourth-order resonance 

v, = +z* (I, - 3u*') - P&l (3Q - arl) 

and S is uniquely determined by the formulas above. 
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